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Abstract-A set of straight cracks in an infinite elastic medium under time harmonic SH-wave
loading is considered. Using the representation theorem for the displacements the problem is
des.:ribed by a system of integral equations. Numerical solutions for dynamic stress intensity factors
"f v'lrious cra.:k I:tmtigurations are presented and crack interaction phenomena are discussed.

I. INTRODUCTION

The dynamic mode J[( problem of cracks in an infinite elastic region loaded by time
harmonic SH waves often has been discussed in the literature. Using integral transform
techniques Loeber and Sih[l] and Mal[2] among others investigated the dilTraction of an
incident plane wave by a single crack. Gross[3.4] solved the same problem for a plane and
for a circular wave by means of wave function expansions. Some results can also be found
in Ref. (5). Two collinear cracks of equal length loaded by a normally incident plane wave
were considered by Jain and Kanwal[6] and !tou[7]. However. it seems that on account of
the mathematical complexity research has been restricted to the cases of a single crack and
of two collinear cracks. To the authors' knowledge there arc no analytical investigations
which arc applicable to general cases of two or more cracks.

In this paper the plane problem of an inlinite region containing 'In arbitrary set of
straight cracks which arc excited by an im:ident time harmonil.: Sf' wave is investigated.
Using the representation theorem for the displacements. the boundary value problem is
formulated in tams of singular integral equations for the displacement jump .ICross the
cracks. An appropriate expansion of the unknown function into Chebyshev polynomials
leads to a system of algebraic equations for the expansion coetlicients; the latter arc directly
connected with the dynamic stress intensity factors. As examples various conligurations of
two cracks loaded by plane waves of different incident angles an: considered and numerical
results are presented.

2. BASIC EQUATIONS

We consider a plane infinite clastic region containing N straight cracks of length 2tl,
with ". = I..... N (Fig. I). The location of the "th crack with respect to the global coor-

/

Fig. I. Cral:k system in an infinite region.
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dinates x" x.:: can be described by the position vector X~, of the crack centre and tht: crack
angle :£,. With the local coordinates x~,x~ and the accompanying unit n:ctors n', e' tht:
points along the cracks are given by the position vector

x' = xo+x~e', (I)

The elastodynamic scattering problem of time harmonic SH waves is described by the wavt:
equation

the constitutive relation

r, = IIII'.x

and the boundary conditions along the traction free assumed cracks

rx(x~)n~ = o. ,,= I, ... , N. (4)

Herein II'(.\' I' .\'J is the displacement in the x,·direetion and for the only non-vanishing
stn:ss components the notation r. = (1J~ with IX = \, 2 is introduced. The quantities k, Jl and
II: are the wave number, the shear modulus and the components of the normal vector "',
respectively. Subscripts after a comma denote ditl'crentiation with n;spect to the cor­
responding coordinates. and the summation convention applies.

If an incident wave impinges on the cracks, then scattered waves arc induced. The total
fields of displacement II' and stress r. can be written as a sum of th.: incident field II", r~ and
the scattered field 11''' r: which satisfy egns (2) and (3) (the time f:lctor c"" is olllitt.:d
throughout th.: analysis)

I\' = w' + 11''' (5)

II' th.: in.:ident field is known. then the m:,in task involves till: determination of the sca' t.:n:d
lield. Using Ih.: representation theorem[S IOJ th.: scatter.:d displacement field can b.:
.:xpresscd in the form

II'S(x') = i f'" a;lI: 'I" d.\' 1

"': ... I (j~

with th.: Gr.:en's fun.:tion

i cJ
(j~(x' x') = JI' ll(klx' - x'l)
x' 4 Dx

x
II . .

and the displacement jump across the cracks

q"(x~) = 1\"(x~,O')-II"(X~,O ).

(7)

(X)

In eqn (7) 11\,'1 denotes the Hankel function of the first kind and zeroth on.h:r; lx' - x'i is
the distance between the source point x' and the observation point x'.

It should be pointed out, that the behaviour of 'f' at the crack tips is known. From the
ncar field formulas[II). which are the same in the static and in the time harmonic case. it

follows that for r -+ 0

4/\
'f -+ -~·-,/r.

IIJ(2rr.)
(9)
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Here r is the distance from the crack tip and K is the mode III stress intensity factor.
Introducing eqn (6) into eqn (3). boundary conditions (4) lead to the integral equations

(10)

for the unknown functions 'P\ where s = xl/a" and;. = t•...• N. The left-hand side ofeqn
(10) describes the known traction on account of the incident wave.

If'P" is determined. the total displacement and stress field can be calculated from eqns
(6), (7). (3) and (5). From expression (9) we get for the stress intensity factors of the I\th
crack

K'± = J!. J(27t) I' I UJ"( )" 1m T s.
4 a" ,-± I J(I =Fs)

The plus and minus sign indicates the right and the left crack tip. respectively.

3. SOLUTION OF THE INTEGRAL EQUATION

The asymptotic behaviour of the Hankel function H\'I)(:) for: -0 0 is given by

.,.
(I) _I I :

1/ 0 (:) -0 n .,'7t _

Consequently the kernel functions in eqn (10) behave as

tJ . I
l1~n"n' - ._..... ~.- ..

:1.' Xl II I" '1 2
L'(II X -x

( II)

( 12)

( 13)

as x' -0 x": they are hypersingular. For the purpose of .1 numerical solution the integral
equations therefore require a specific treatment. In this paper a Galerkin method is used.

We represent 'P" as the series

,~J)

'P"(s) = a"J(I- s 2) L C~,Um ,(s)
1'1-1

(14)

where Um I(S) arc Chebyshev polynomials of the second kind and C~ arc unknown expan­
sion coellicients. This ansatz shows a behaviour at the crack tips which is in accordance
with expression (9). Substituting eqn (14) into eqn (10), multiplying both sides by
J(I-s!)U•. I(S) and integrating from -I to I. with the orthogonality relation of the
Chebyshev polynomials we obtain an infinite system of linear algebraic equations for C~

..,
" A'''C'' = Riol..J nrrt -m If"

1'1·1

1\.;. = I, ...• N. ( 15)

Coellicients A~~, and the right-hand side are given by



D. GI(OSS and CH. ZH .... S{;

The stress intensity factors are directly connected with the coefficients C;;'. Inserting egn
(1'+)intoeqn(ll)with U",_l(±1) = m(±l)'" I [13] we obtain

K':t !J. '( ) ~ ( I m I C"• =:;;".J n(J, L. "±) m m·
m= I

( IX)

It is obvious that in numerical calculations m and n in egns (14)-(18) (that is to say the
number of Chebyshev polynomials taken into account) is limited. If the incident wave and
the geometrical configuration of the crack system is known, then the quantities A~;;', B~ and
consequently C;;' can be calculated with sufficient accuracy by appropriate numerical pro­
cedures.

4. EXAMPLES

For all examples the incident wave is taken as a plane wave. It is given by

11" = Ii, exp {ik(xl sin O+x~ cos O)J ( 19)

where Ii' is the amplitude and (} is the incidellt angle. From eqo (4) we get for the stress
amplitude of this wave i = i/lhi'.

As the physically most important quantities only the stress intensity factors of the
cracks an.: considered.

4.1. Tlte sin,(f//' crack

Although for the single crack results already exist in the literature, this case will be
considered hen: onl.:e more as a test I.:ase. Equation (15) n.:dul.:es to the simple form

L A"",e", = Un­
m-l

(20)

For the craek of length 2a it is assumed that the 10l.:al and global l'Oordinate systems
winl.:ide. Using the roufier integral representation of the Hankel funl.:tion /IV) the matrix
.·1"", I.:an then be written as{IO]

(21 )

for ~ ~ k

for ~ < k
(22)

and 1m arc the Bessel functions of the first kind. The right-hand side of egn (20) beeomes

i 4n( - I r (n - f )
B~ =- .-.---- cot (} 1Aka sin 0) exp in .

!J. ka 2
(23)

The accuracy of the calculated stress intensity factors depends on the number of expansion
coellicients taken into account. Numerical calculations have shown, that for ka ~ 8 h:n
terms (m, n < II) are sullicient to achieve an accuracy of 1%.

In Fig. 2 the dimensionless stress intensity I~lctor K t ii,.!(na) is plottcd as a function of
thc dimensionless wavc number ka for different incident angles O. A comparison with data
of other authors shows a very good agreement. From the figure the unexpected result comes
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Fig. 1. "'-Filctors of il single crack.

oUI. that for () ::: re/6. re/4. re/3 the stress intensity factor at the right l:rHck tip gene:rally is
higher than ,It the left tip.

4.2. Two parallel tracks
For the: two purulld cracks in rig. 3 which are louded by the wave (19) eqn (15) can

he: written as

,
L (A,~~C/~I+A~,;C;I) = B~

m ... l

(24)
" ('I~ICI + _1 22C 2 ) - l')~L- II*' mrt m • m" ", - J If

nt .... l

f
d

1

Fig. 3. Two pamllcl cracks.
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with

and

B,; i ~II( - I)" (II - I )
.._- cot 0 J"(kal sin 0) exp . ,_. in
J.t kaj

, i ~II( - I)" [ II - I 1
B;=- cot O.l,,(ka: sin 0) exp ik(c sin O+d cos {I)+ . in ..

J.t ka: 2 .

In <:ontrastto A,~.~, A,;.~. which are always symmetric with resped to m. 11 the matrices Am~

and A;:,~ arc only symmetric if the lengths of hoth cracks are equal. As a conseqllel1l:e the
numerical calculations for cracks of dil1i:rent length arc more cumhersome than for cracks
of equal length.

In the following somc spedal cases arc considcred. Figure 4 shows the normalizcd A.-­
factors for wllincar cracks. As it can he seen from Figs 4(a) and (h) for a normally incident
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~I.. ..-.... -....
II II

Fig.... ,,-Factors or collinear cracks or cllll"llcngth.
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wave: the interaction depends on the distance C of the crack centres. With increasing distance
the results approach that of a single crack. For the static case (ka - 0) the K values of the
inner tips are higher thun for the outer tips. In the dynamic case the opposite may occur
for a specific distance and wave number.

Results for an incident angle lJ =: n/4 and c/O"" 2.5 arc plotted in Figs 4(c) and (d).
Similar to the single crack K+ lies above K - for higher wave numbers. The differences in
the results for the two cracks are due to the interaction.

[n Fig. 5 collinear cracks of different lengths are considered. The influence of the left
{longer) on the right (shorter) crack increases with increasing length ratio ada~.

The results for two parallel cracks ofequal length (Fig. 6) would be difficult to predict
on the basis of intuitive argument. With decreasing distance the first maximum increuses
and is shifted to higher wave numbers. Furthermore. the maximum of the first crack is higher
than IQr the second one. Also remarkable is the steep increase and decrease. respectively. of
the curves ncar this m,lximum especially for 0 == 1£/4. For specific distances and wavelengths
a lero (or nearly zero) A'-lllctor may occur at a crack tip.

As a final example. a general configuration ofequal cracks is considered in Fig. 7. The

I..

.S

0)

9-0
c/a,-3
Cl"ack <D

b) '----r--....,----..---,.--i
Ka,

9-0 9-0
C/ll,-3 c/a.-3... crack@ 1.1 crack@

e e..... ....;-.
~~

o. ..
cl dl

ka, Ka,

I.' 9-W/4 9-./4
c/a.-3 I.' c/a,-3
a./a.-l.1 a,/a.-l.l

e'
Crack (j) craCk®

~ ...
...... ..
'" "'".. ..
e, tJ

ka, ka,

Fig. 5. "·Factors of collinear cracks ofditTerent length.



...
~ I.S

.. I

"-
X 1.1

..
a}

...
..
"­
:l£

..
c)

a-./4
d/a-a.5
crack <D ...

..
d)

ka

a-1I/4
d/a-a.5
crack ®

ka

I.'

~...
~ ...

.,
ol

...
...
~

..
c)

d/a-a.5
a-o
c/a-O.5
crack <D

Fig. 6. ,,-Facturs uf parallel cracks.

...
~..
~ ...

..
b)

ka

...
a-o
c/a-a.5
crack ®

..
d)

ka

a-o
c/a-a.5
crack <D

9-0
c/a-O.5
crack ®

1<a

I.'

~ .....
"­:l£

..
e}

9-./4
c/a-O.5
d/a-O.5
crack <D

1)
ka

Fig. 7. "·Factof~ of a general configuration of parallel cf<tcks.

9-11/4
c/a-O.5
d/a-a.S
crack ®

ka



Diffraction of SH waves by a system of cracks

interaction becomes stronger with decreasing distance of the cracks. This leads to increasing
maxima of the curves but also to very low K values for certain specific parameters.
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