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Abstract—A set of straight cracks in an infinite elastic medium under time harmonic SH-wave
loading is considered. Using the representation theorem for the displacements the problem is
described by a system of integral equations. Numerical solutions for dynamic stress intensity factors
of various crack configurations are presented and crack interaction phenomena are discussed.

I. INTRODUCTION

The dynamic mode I problem of cracks in an infinite elastic region loaded by time
harmonic SH waves often has been discussed in the literature. Using integral transform
techniques Loeber and Sih[1] and Mal[2] among others investigated the diffraction of an
incident plane wave by a single crack. Gross{3,4] solved the same problem for a plane and
for a circular wave by means of wave function expansions. Some results can also be found
in Ref. [3]. Two collincar cracks of equal length loaded by a normally incident plane wave
were considered by Jain and Kanwal[6] and {tou[7]. However, it scems that on account of
the mathematical complexity research has been restricted to the cases of a single crack and
of two collinear cracks. To the authors’ knowledge there are no analytical investigations
which arce applicable to general cases of two or more cracks.

In this paper the plane problem of an infinite region containing an arbitrary set of
straight cracks which are excited by an incident time harmonic SH wave is investigated.
Using the representation theorem for the displacements, the boundary value problem is
formulated in terms of singular integral equations for the displucement jump across the
cracks. An appropriate expansion of the unknown fuaction into Chebyshev polynomials
leads to a system of algebraic equations for the expansion coeflicients ; the latter are directly
connected with the dynamic stress intensity fuctors. As examples various configurations of
two cracks loaded by plane waves of different incident angles are considered and numerical
results are presented.

2. BASIC EQUATIONS

We consider a plane infinite clastic region containing N straight cracks of length 24,
with v = I..... N (Fig. ). The location of the xth crack with respect to the global coor-
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Fig. |. Crack system in an infinite region.
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dinates x,, x. can be described by the position vector x% of the crack centre and the crack
angle x,. With the local coordinates x%, x% and the accompanying unit vectors a", ¢ the
points along the cracks are given by the position vector

x* = x5+ x\et. X< d,. (1)

The elastodynamic scattering problem of time harmonic SH waves is described by the wave
equation

wv,,+k3n' =0 2)
the constitutive relation

T, = pw, (3)

and the boundary conditions along the traction frec assumed cracks
,(x)n; =0, I <€ a,, k=1,....N. 4)

Herein wiv,, x,) is the displacement in the x-direction and for the only non-vanishing
stress components the notation 1, = a5, witha = [, 2 is introduced. The quantitics &, i and
it are the wave number, the shear modulus and the components of the normal vector o,
respectively. Subscripts after a comma denote differentiation with respect to the cor-
responding coordinates, and the summation convention applies.

If an incident wave impinges on the cracks, then scattered waves are induced. The total
ficlds of displacement w and stress t, can be written as a sum of the inadent ficld w', 73 and
the scattered ficld w*, 1y which satisfy eqns (2) and (3) (the time factor ¢ 1s omitted
throughout the analysis)

W= w4t T, =1, +71). (5)
It the incident field is known, then the main task involves the determination ot the scattered
ticld. Using the representation theorem(8 -10] the scattered displacement field can be
expressed in the form

wi(x’) = i ‘

N ] a,

alm\t dyy (6)
with the Green's function

d
~HA (KX =X

i
oi(x*, X)) =

- 7
4 Ox, ) )

and the displacement jump across the cracks
W) = w' (61,07 ) — w0 ) (8)

In eqn (7) #" denotes the Hankel function of the first kind and zeroth order: [x* =x'j is
the distance between the source point x™ and the observation point X'

It should be pointed out, that the behaviour of *¥ at the crack tips is known. From the
near field formulas[11]. which are the same in the static and in the time harmonic case. it
follows that for r —» 0

4K
Y - —J I (9)
i/ (2m)
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Here r is the distance from the crack tip and K is the mode I1I stress intensity factor.
Introducing eqn (6) into eqn (3), boundary conditions (4) lead to the integral equations

) o . c‘a A I .
t(mp = —plim - ¥ a | oinini¥r(s) ds (10)
¥ -yt 6."3 =1 -1
for the unknown functions W*, wheres = x{/ag,and A = 1,.... N. The left-hand side of egn

{10) describes the known traction on account of the incident wave.

[f W is determined, the total displacement and stress field can be calculated from eqns
(6). (7). (3) and (5). From expression (9) we get for the stress intensity factors of the xth
crack

g
K 4 a, :ET} \/(|¢S)‘P (). ‘ (y

The plus and minus sign indicates the right and the left crack tip, respectively.

3. SOLUTION OF THE INTEGRAL EQUATION

The asymptotic behaviour of the Hankel function HY"(z) for z — 0 is given by

3 -
2 -
HY ) =" In 2. (1
n 2
Consequently the kernel functions in eqn (10) behave as
a eon i i (%
coRg ~ e s K
axy U et =x)?

as x° — x*: they are hypersingular. For the purpose of a numerical solution the integral
equations thercfore require a specific treatment. In this paper a Galerkin method is used.
We represent W™ as the series

W) = a,J(1=59) 3 CSUn 1) (14)
ms=|

where U, _ (s) are Chebyshev polynomials of the second kind and C5, arc unknown expan-
sion cocflicients. This ansatz shows a behaviour at the crack tips which is in accordance
with cxpression (9). Substituting eqn (14) into eqn (10), multiplying both sides by
JU —s7)U, . (s) and integrating from —1 to 1, with the orthogonality relation of the
Chebyshev polynomials we obtain an infinite system of lincar algebraic equations for C3,

Y ARCL =B  kA=1,... N (15)
o}

Cocflicients 4%, and the right-hand sidc arc given by

: : , A B .
Ay = —llJ : {\/(‘ =), () lim ¥ a;é‘(-‘;;J. oirin /(1 =sH)U, (5 dx} ds  (16)
. ‘ .

gt
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B} = f JU=5)U,_ () Th(x)n} ds. (17
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The stress intensity factors are directly connected with the coefficients CJ,. Inserting egn
(14 intoeqn (1) with U, (£ 1) = m(+£1)" "' [13] we obtain

Kt = ,,\/(na ) Z (+ 1) 'mCh, (1%}

=1

It is obvious that in numerical calculations m and n in eqns (14)-(18) (that is to say the
number of Chebyshev polynomials taken into account) is limited. If the incident wave and
the geometrical configuration of the crack system is known, then the quantities 4%, B, and
consequently Cj, can be calculated with sufficient accuracy by appropriate numerical pro-
cedures.

4. EXAMPLES

For all examples the incident wave is taken as & plane wave. Tt is given by
w' = wexp {ik(x, sin 0+ x; cos 0)] (19

where o is the amplitude and § is the incident angle. From egn (4) we get for the stress
amplitude of this wave © = k.

As the physically most important quantitics only the stress intensity factors ol the
cracks are considered.

4.1 The single erack
Although for the single crack results already exist in the literature, this case will be
considered here once more as a test case. Bquation (15) reduces to the simple form

]

Y G, =B, 20

-l

For the crack of length 2« it is assumed that the local and global coordinate systems
coincide. Using the Fourier integral representation of the Hankel function #{" the matrix
A can then be written as[10}

e R . . .
A = mpr CXp 4 ey JuE)d (Cay S (21}
- VN
where
(ET—kHH? for &>
Vo= . 5 PPy - {22
d —i(kT =D for <k

and J,, are the Bessel functions of the first kind. The right-hand side of egn (20) becomes

«t- (=17 cot O J,(ka sin ) exp ( - irr). 23
n ka 2
The accuracy of the calculated stress intensity fuctors depends on the number of expansion
coeflicients taken into account. Numerical calculations have shown, that for k¢ < 8 ten
terms (m.n < 11} are suflicient to achicve an accuracy of 1%.

In Fig. 2 the dimensionless stress intensity factor K */7./(na) is plotted as a function of
the dimensionless wave number ka for different incident angles 0. A comparison with data
of other authors shows a very good agreement. From the figure the unexpected result comes
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out, that for 0 = n/6, n/4, n/3 the stress intensity factor at the right crack tip generally is

higher than at the left tip.

4.2, Two parallel cracks
For the two parallel cracks in Fig. 3 which are loaded by the wave (19) eyn (15) can

be written

as

2 (Aot A,0Co) = B,

m -]

Y (ANCL+ARCY) = B]

LR

Fig. 3. Two parallel cracks.
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with
m+n A z "’V
Apn = mn exp (~—3~~~1n)‘[ =L (Ca) . (Sa)) dd
. ds nm+n. Loy ; , - .
A = if"m exp ( 3 m)j ;%Jmléaz)Jn(;aJ exp (ifc—yd) d?
H B EIE SRS
(25
.4 n+n, Sy . ; .. .
Ajn = o mn exp | ——in wdu(Sa ) {Cas) exp (—ifc —pd) d&
2 ~ SRR
‘- m+n oy . . .
An = mn exp <7ln)J s} (Cay) dE
and
T du(—1) . n—1,
B) = - " cot 0 J,(ka, sin 0) exp ( m)
o ka, 2
{26)
LTy ) . . -1
B; = : ”f‘\ s cot # J tka, sin ) exp [u’c((' sin 4-d cos N+ " 5 ix}.
u (il -~ |

In contrast to A}, 4.7, which are always symmetric with respect to s, o the matrices AL
and .1, arc only symmetric if the lengths of both cracks are cqual. As a comsequence the
numerical caleulations for cracks of different length are more cumbersome than for cracks
of equal length.

In the following some special cases are considered. Figure 4 shows the normalized A-
factors for collinear cracks. As it can be seen from Figs 4(a) and (b) lor a normally incident
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Fig. 4. K-Factors of collinear cracks of equal length.
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wive the interaction depends on the distance ¢ of the crack centres. With increasing distance
the results approach that of a single crack. For the static case (ka — 0) the X values of the
inner tips are higher than for the outer tips. In the dynamic case the opposite may occur
tor a specific distance and wave number.

Results for an incident angle 8 = /4 and c¢/a = 2.5 are plotted in Figs 4(c) and {d).
Similar to the single crack K* lies above K~ for higher wave numbers. The differences in
the results for the two cracks are due to the interaction.

In Fig. 5 collinear cracks of different lengths are considered. The influence of the left
{longer) on the right (shorter) crack increases with increasing length ratio a /a,.

The results for two parallel cracks of equal length (Fig. 6) would be difficult to predict
on the basis of intuitive argument. With decreasing distance the first maximum increases
and is shifted to higher wave numbers. Furthermore, the maximum of the first crack is higher
than for the second one. Also remarkabile is the steep increase and decrease, respectively. of
the curves near this maximum especially for 8 = n/4. For specific distances and wavelengths
a zero (or nearly zero) K-factor may occur at a crack tip.

As a final example, a general configuration of equal cracks is considered in Fig. 7. The
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Fig. 5. K-Factors of collincar cracks of different length.
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interaction becomes stronger with decreasing distance of the cracks. This leads to increasing
maxima of the curves but also to very low K values for certain specific parameters.
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